12. 1D Kalman Filter
1D Kalman Filter
In the programming quiz below, write the code that will iteratively go through the available measurements and motions, and apply a measurement update or a state prediction to each one of them.
Start Quiz:
#include <iostream>
#include <math.h>
#include <tuple>
using namespace std;
double new_mean, new_var;
tuple<double, double> measurement_update(double mean1, double var1, double mean2, double var2)
{
new_mean = (var2 * mean1 + var1 * mean2) / (var1 + var2);
new_var = 1 / (1 / var1 + 1 / var2);
return make_tuple(new_mean, new_var);
}
tuple<double, double> state_prediction(double mean1, double var1, double mean2, double var2)
{
new_mean = mean1 + mean2;
new_var = var1 + var2;
return make_tuple(new_mean, new_var);
}
int main()
{
//Measurements and measurement variance
double measurements[5] = { 5, 6, 7, 9, 10 };
double measurement_sig = 4;
//Motions and motion variance
double motion[5] = { 1, 1, 2, 1, 1 };
double motion_sig = 2;
//Initial state
double mu = 0;
double sig = 1000;
//######TODO: Put your code here below this line######//
// Loop through all the measurments
// Apply a measurment update
printf("update: [%f, %f]\n", mu, sig);
// Apply a state prediction
printf("predict: [%f, %f]\n", mu, sig);
return 0;
}
#include <iostream>
#include <math.h>
#include <tuple>
using namespace std;
double new_mean, new_var;
tuple<double, double> measurement_update(double mean1, double var1, double mean2, double var2)
{
new_mean = (var2 * mean1 + var1 * mean2) / (var1 + var2);
new_var = 1 / (1 / var1 + 1 / var2);
return make_tuple(new_mean, new_var);
}
tuple<double, double> state_prediction(double mean1, double var1, double mean2, double var2)
{
new_mean = mean1 + mean2;
new_var = var1 + var2;
return make_tuple(new_mean, new_var);
}
int main()
{
//Measurements and measurement variance
double measurements[5] = { 5, 6, 7, 9, 10 };
double measurement_sig = 4;
//Motions and motion variance
double motion[5] = { 1, 1, 2, 1, 1 };
double motion_sig = 2;
//Initial state
double mu = 0;
double sig = 1000;
for (int i = 0; i < sizeof(measurements) / sizeof(measurements[0]); i++) {
tie(mu, sig) = measurement_update(mu, sig, measurements[i], measurement_sig);
printf("update: [%f, %f]\n", mu, sig);
tie(mu, sig) = state_prediction(mu, sig, motion[i], motion_sig);
printf("predict: [%f, %f]\n", mu, sig);
}
return 0;
}
Additional Challenge
You should try experimenting with different initial values - for instance changing the initial estimate to something absurd, and then adjusting the confidence value from 1000 down to a single digit number. At what point does the Kalman Filter start to be affected by the incorrect initial estimate? How robust is the filter to errors?